Our Technology

View as PDF – Our Technology

Interlube International holds exclusive rights to Surface Improving Eutectic additives. Interlube’s Eutectic additives contained in Opti products work to reduce friction, heat and wear associated with the severe demands placed on today’s power equipment, improving performance and extending engine life. The following explains the fundamentals of lubrication along with the three generations of oils. Opti oil’s Surface Improving Eutectic additive is explained as the third generation of oil.

FUNDAMENTALS OF LUBRICATION:

Although a lubricant must perform many functions, its most important job is to protect working components by reducing friction. To analyze this critical aspect of lubrication, lets take a look at what is being lubricated and how different lubricants approach the task. All machined metal surfaces have a surprising amount of surface roughness (pictured right). The fundamental purpose of lubrication is to separate metal surfaces. The microscopic peaks and valleys in all finished components make surface separation more difficult. An oil layer with a thickness of at least twice the height of the tallest peak must be maintained in order to eliminate metal-to-metal contact. If complete surface separation is achieved, the resulting condition is called hydrodynamic lubrication. Hydrodynamic lubrication is not difficult to achieve provided a constant speed with no load is maintained. Unfortunately, rarely does power equipment run at a constant speed with no load. Under a loaded condition the surfaces can be forced together resulting in metal-to-metal contact, and of course, wear.

SURFACE IMPROVEMENT:

To assist in the formation and maintenance of hydrodynamic conditions, additives are used in lubricant formulation to smooth out surface roughness. All current oil formulations include some method of accelerating surface improvement. Separating oils by their built-in surface improvement process yields 3 oil classifications or “generations”, as they are commonly called.

Continue reading…